Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 最新索引

基于多模型仿真的變電站數(shù)據(jù)監(jiān)控與性能評估研究

來源:電工電氣發(fā)布時間:2025-04-27 12:27 瀏覽次數(shù):2

基于多模型仿真的變電站數(shù)據(jù)監(jiān)控與性能評估研究

蔣亞坤,林旭,黃博
(云南電網(wǎng)有限責任公司,云南 昆明 650011)
 
    摘 要:各模型組合運用為變電站數(shù)據(jù)監(jiān)控提供了技術(shù)支持,在數(shù)據(jù)分析和故障預警方面具有重要應用價值。采用卡爾曼濾波、自回歸積分滑動平均(ARIMA)模型、高斯混合模型(GMM)、移動平均模型和系統(tǒng)性能評估方法對變電站數(shù)據(jù)監(jiān)控的多種場景進行了仿真測試與分析。研究結(jié)果表明:卡爾曼濾波在噪聲較大的觀測數(shù)據(jù)中具備良好的平滑效果和狀態(tài)估計能力;ARIMA 模型能夠準確捕捉時間序列的長期趨勢和短期波動,適用于負荷預測;GMM 模型通過概率密度分析成功識別低概率的異常點,實現(xiàn)異常檢測;移動平均模型在不同窗口大小下能夠平滑數(shù)據(jù)并分析短期趨勢。通過系統(tǒng)性能評估實驗,驗證了系統(tǒng)在實時監(jiān)控中的處理能力,發(fā)現(xiàn)高吞吐量和低延遲是系統(tǒng)高效運行的關(guān)鍵指標。
    關(guān)鍵詞: 變電站;數(shù)據(jù)監(jiān)控;卡爾曼濾波;自回歸積分滑動平均(ARIMA) 模型;高斯混合模型;移動平均模型;異常檢測;系統(tǒng)性能評估
    中圖分類號:TM63 ;TM743     文獻標識碼:A     文章編號:1007-3175(2025)04-0053-06
 
Research on Substation Data Monitoring and Performance
Evaluation Based on Multi-Model Simulation
 
JIANG Ya-kun, LIN Xu, HUANG Bo
(Yunnan Power Grid Co., Ltd, Kunming 650011, China)
 
    Abstract: The integrated utilization of multiple models offers technical support for substation data monitoring, demonstrating significant applied value in data analysis and fault warning systems. In this study, simulation tests and comprehensive analysis were conducted on multiple scenarios of substation data monitoring by employing Kalman filter, auto-regressive integrated moving average(ARIMA)model, Gaussian mixture model (GMM), moving average (MA) model, and systematic performance evaluation methodologies. The results show that Kalman filtering has good smoothing effect and state estimation ability in noisy observation data; ARIMA model can accurately capture long-term trend and short-term fluctuation of time series, which is suitable for load forecasting; the GMM successfully identifies low-probability anomalies through probability density analysis and achieves anomaly detection; the moving average model is capable of smoothing the data under different window sizes and analyzing short-term trends. Ultimately, system performance evaluation experiments were conducted to verify the processing capabilities in real-time monitoring scenarios, with experimental results demonstrating that high throughput and low latency are critical indicators for efficient system operation.
    Key words: substation; data monitoring; Kalman filter; auto-regressive integrated moving average model; Gaussian mixture model; moving average model; anomaly detection; system performance evaluation
 
參考文獻
[1] MOGHBELI M, REZVANI M M, MEHRAEEN S, et al.Dynamic transmission and distribution analysis for asymmetrical networks in the presence of distribution-connected DER units[C]//2023 IEEE Texas Power and Energy Conference(TPEC),2023.
[2] FU Sheng, ZHANG Yabin, SONG Haiqiang.Development of the remote monitoring and warning system for operation condition of the main drainage pump in mine[C]//2011 IEEE International Conference
on Mechatronics and Automation,2011.
[3] TANG Chao, CHANG Zhengwei, LIANG Huihui, et al.Automatic identification method of HPLC platform topology based on characteristic data extraction[J].Electric Power Components and Systems,2023,51(12) :1197-1206.
[4] DAN M, ZHANG Y, GAO F.Extended Kalman filtering for enhancing a cyclic pattern-updating scheme of single-pixel dynamic fluorescence spatial frequency domain imaging publisher's note[J].Optics Letters,2024,49(4) :955.
[5] DOU Zhiwu, JI Mingxin, WANG Man, et al.Price prediction of pu'er tea based on ARIMA and BP models[J].Neural Computing & Applications,2022,34(5) :3495-3511.
[6] YUAN H, ZHANG X P.Multiscale fragile watermarking based on the Gaussian mixture model[J].IEEE Transactions on Image Processing,2006,15(10) :3189-3200.
[7] MOON U C, LEE K Y.A boiler-turbine system control using a fuzzy auto-regressive moving average(FARMA) model[J].IEEE Transactions Energy Conversion,2003,18(1) :142-148.
[8] MURPHY-CHUTORIAN E, TRIVEDI M M.Head Pose Estimation and Augmented Reality Tracking:An Integrated System and Evaluation for Monitoring Driver Awareness[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(2) :300-311.